Archaeology Odyssey 4:5, September/October 2001

Earthquake Storms

What triggered the collapse?

By Amos NurEric H. Cline

It sounded like the roar of a high-speed train—but it caused far more devastation. The earthquake that hit northwestern Turkey at Izmit, near Istanbul, on August 17, 1999, measured 7.4 on the Richter scale and killed 17,000 people. The tremors destroyed entire buildings, collapsed bridges, burst dams and caused landslides. Three months later, another earthquake with a magnitude of 7.1 struck about 60 miles to the east.

Both quakes occurred on what is called the North Anatolian Fault, which runs across northern Turkey. Since 1939, a series of large earthquakes has worked its way roughly from east to west along the 650 miles of this fault line. Such an “earthquake sequence” occurs when the strain on a fault has accumulated gradually over a period of relative inactivity, sometimes lasting a few hundred years. This strain is then released in a series of earthquakes, each one triggering the next, rather than in a single large earthquake.

In earthquake sequences, the initial earthquake ruptures only a segment of the fault zone, thus putting more stress on an adjacent portion of the fault. The strain on this next section may then be released in a second earthquake. This could occur weeks, months, years or even decades after the first earthquake. This second earthquake puts additional stress on the next portion of the fault, forcing a third earthquake, and so on down the line until the entire fault is “unzipped” and free from strain. The strain along the fault line then begins to build up all over again—eventually, perhaps centuries later, leading to another stress-releasing earthquake sequence.

Earthquake sequences taking place in the medieval or ancient past are called “earthquake storms.” One such storm appears to have occurred between 350 and 380 A.D., damaging sites in Israel, Cyprus, northwest Turkey, Crete, Corinth, southern Italy, Sicily and northern Libya.1 A longer earthquake storm, lasting more than 80 years, is thought to have occurred along the North Anatolian Fault from 967 to 1050 A.D., during which time more than 20 sizable earthquakes may have struck.2

We believe that an earthquake storm lasting 50 years, from about 1225 to 1175 B.C., substantially contributed to the collapse of Late Bronze Age civilization in the Aegean and eastern Mediterranean. Nearly 50 Late Bronze Age sites in this region show evidence of catastrophic destruction, according to Robert Drews of Vanderbilt University. These devastated Late Bronze Age sites correspond very closely to sites struck by damaging earthquakes documented over the last century. These sites, it seems, have been earthquake-prone throughout history—and probably long before that.3

The precise cause of the death of the Bronze Age civilizations in the Aegean and eastern Mediterranean toward the end of the 13th century B.C. has long been a mystery. Scholars have proposed various diagnoses, including widespread drought, social unrest, external invasion and economic disaster. In 1948 Claude Schaeffer, the French excavator of Ugarit (modern Ras Shamra) on Syria’s Mediterranean coast, first suggested that an earthquake might have been responsible for the destruction not only of Ugarit but also of other Late Bronze Age sites. This idea was initially rejected, in part because the destructions at the end of the Late Bronze Age were spread over a 50-year time span and could not have been the result of a single catastrophe.4 However, knowing today what Schaeffer could not have known in 1948, we suggest that one cause of this 50-year-long cataclysm was a series of earthquakes—an earthquake storm.

It is relatively easy for excavators to recognize destruction levels, but it is often difficult to determine their causes. Was it war, an accidental fire, an earthquake, a combination of events? A number of criteria suggest possible earthquake damage: collapsed, patched or reinforced walls; crushed skeletons, or bodies found lying under fallen debris; toppled columns lying parallel to one another; slipped keystones in archways and doorways; and walls leaning at impossible angles or offset from their original position.5

Archaeologists have found widespread evidence of earthquake damage like this dating to the crucial period, 1225–1175 B.C. In the Aegean, earthquakes probably struck at Mycenae, Tiryns, Midea, Thebes, Pylos, Kynos, Lefkandi, the Menelaion, Kastanas in Thessaly, Korakou, Profitis Elias and Gla. More sites could be added to this list, and, almost certainly, additional sites will be added as archaeological evidence accumulates. In the eastern Mediterranean, earthquake damage is visible at Troy, Karaoglun, Hattusa, Ugarit, Alalakh, Megiddo, Ashdod and Akko, among other sites.6

At Mycenae, for example, excavators found the wall flanking the entrance to the so-called Cult Center of the Citadel bulging outward, its roof slates fallen to the ground, and its stones charred by fire. Shortly after this destruction, new walls in the inner sanctum were built to prop up the original ones. One wall in a neighboring room was reinforced. New doors and windows were opened, and the original ones were walled up—all strong evidence of an earthquake.7

In the so-called Southwest House of Mycenae’s Citadel, the north and south walls of one room had collapsed, crushing a young man. The excavators found the skeleton under the burned debris. Huge pieces of plaster from the frescoes lining the walls of the building had fallen, apparently having come loose before the walls themselves collapsed.8

Amid the debris of Mycenae’s Panagia House I, excavator George Mylonas found a “skeleton of a middle-aged woman whose skull was crushed by a falling stone.” The body was then buried by material from the house, including smashed vessels and a chimney pot.9 According to Mylonas, “House I was suddenly destroyed, but not by fire.” The piles of stones, the smashed vases with all their pieces, the crushed skeleton—“all seem to indicate that House I was destroyed by earthquake.”10

Klaus Kilian, the late excavator of Tiryns, long argued that the site was destroyed around 1200 B.C. by an earthquake that also affected other sites, such as Mycenae. The geoarchaeologist Eberhard Zangger has recently suggested that a catastrophic flash flood that buried Tiryns’s lower town about 18 feet deep may have been related to this earthquake.11 The excavators of Midea, too, suggest that the destruction of the site toward the beginning of the 12th century B.C. was caused by an earthquake. As evidence, they point to the city’s “collapsed, distorted, curved and tilted walls,” as well as a skeleton found under the debris.12

Perhaps the most famous Late Bronze Age city showing evidence of earthquake destruction is Troy. Located in northwestern Anatolia, Troy lies near the western end of the North Anatolian Fault, not too far from where the devastating earthquakes of two years ago struck. Heinrich Schliemann, University of Cincinnati archaeologist Carl Blegen and other excavators at Troy have noted evidence of earthquakes in various occupational strata: Troy III (c. 2250–2050 B.C.), Troy IV (c. 2050–1950 B.C.), Troy V (c. 1950–1750 B.C.) and probably the great Late Bronze Age city of Troy VI (c. 1750–1250 B.C.).a This latter stratum may have been the city of Homer’s epics, which were written some four centuries later. Possibly, the city was severely weakened by an earthquake, making it susceptible to attack during the Trojan War.

Although some scholars dispute the idea that Troy was significantly damaged by an earthquake in 1250 B.C., the evidence for seismic destruction is powerful. Indeed, in their final report, the excavators of Troy VI write that they are confident “in attributing the disaster to a severe earthquake.”13 Reexamining the remains, the geoarchaeologist George Rapp concluded that the “most tenable hypothesis for the cause of this destruction [Troy VI] lies in foundation failures stemming from earthquake-induced earth movements in the underlying unconsolidated materials. Interpreted thus, the evidence supplied by the Cincinnati excavators … seems overwhelming.”14

As in the Aegean and Anatolia, there is also evidence of earthquake damage in the eastern Mediterranean. At Megiddo, in Israel, for example, located on a branch of the major Dead Sea Fault system, a substantial destruction dating between 1250 and 1200 B.C. has been detected. According to a report on the 1925–1939 excavations by a team from the University of Chicago, a palace at Megiddo “suffered violent destruction so extensive that the Stratum VIIA [c. 1200 B.C.] builders deemed it more expedient to level off the resulting debris and build over it than to remove it all as was the procedure in previous rebuilding undertakings.” Parts of the palace were “filled with fallen stone to a height of about a meter and a half [about 5 feet],” and the bricks from the fallen walls were charred from a fire. The later palace, built around 1200 B.C. directly on top of this destruction level, was about 6 feet higher than the earlier one. The excavators also found “half-burnt bricks” used in the construction of the later palace; these bricks, they concluded, were probably gathered from the burned debris of the previous palace.15 All this strongly suggests that in the latter half of the 13th century B.C., Megiddo was leveled by an earthquake.

In contrast, when a site is destroyed by warfare rather than earthquakes, the evidence is different. The site of Aphek, in Israel, for example, was destroyed toward the end of the 13th century B.C. The excavators of Aphek found arrowheads in the debris, indicating that the site was attacked. “[A]rrowheads stuck in the walls,” they write, “[bear] eloquent testimony to the bitter fighting that raged over the storming of the palace.”16

Similarly, around 1180 B.C., less than a century after apparently sustaining earthquake damage, Troy suffered a similar fate: It was attacked and burned, in a battle that Homer may have remembered as the Trojan War. According to the excavators, “Little imagination is required to see reflected here the fate of an ancient town captured and sacked by implacable foes. One may wonder if the arrowhead found in Street 710—a point of a type known in the contemporary Mycenaean world on the Greek mainland—was not perhaps a missile discharged by an invading Achaean.”17

In his book The End of the Bronze Age (1993), Robert Drews dismisses the possibility that earthquakes caused the destruction of Late Bronze Age Mycenae, Tiryns, Midea, Knossos, Troy and Ugarit. The evidence he cites is the absence of casualties.18 However, 13 bodies have so far been found in the destruction debris at four of these six sites: six skeletons at Mycenae, five at Tiryns, one at Midea, and one at Troy. Excavations of other sites have found skeletons among possible Late Bronze Age earthquake debris: Thebes in Boeotia, the Menelaion in Sparta, and Karaoglun in Anatolia.19 At least 16 skeletons have been excavated in collapsed debris dating to 1225–1175 B.C. at seven sites in the Aegean and eastern Mediterranean.

Many historians and archaeologists refuse to accept widespread conflagration at a site as possible evidence of an earthquake, arguing that no site would have gone up in flames as the result of an earthquake prior to the extensive use of natural gas and electricity: “Earthquakes,” writes Drews, “were in antiquity not associated with devastating fires, presumably because there were no gas mains or electrical cables, and most cities and towns consisted primarily of masonry structures … It therefore strains credulity to suppose that a single earthquake should have resulted in conflagrations at three sites in the Argolid—Mycenae, Tiryns, and Midea—and that similar fires should have been set by this or other quakes at Knossos, Troy, and Ugarit.”20

But this is wrong, too. Fires did follow earthquakes in the pre-modern world. As just one example, consider this contemporaneous account of the terrible earthquake that destroyed Lisbon on November 1, 1755, well before the use of natural gas and electricity:

As soon as it grew dark another scene presented itself, little less shocking than those already described … The whole City appeared in a blaze, which was so bright that I could easily see to read by it. It may be said without exaggeration, that ’twas on fire at least in a hundred different places at once, and thus continued burning for six days together, without intermission, or the least attempt being made to stop its progress. It went on consuming everything the earthquake spared.21

Apparently, combustible material such as thatched roofs, wood and oil caught fire when the Lisbon earthquake struck.

Thus it should not be surprising that most of the sites in the Aegean and eastern Mediterranean that show evidence of earthquake destruction around 1225–1175 B.C. also show evidence of widespread conflagration. Mycenae, Tiryns, Midea, Thebes, Troy, Alalakh and Hattusa, to mention just some of the main sites, all burned down. The excavators of Pylos, Lefkandi, Ugarit, Megiddo, Ashdod and Akko also report fiery destructions. We suggest that these calamities had their origins in an earthquake or earthquakes.

Ever since Claude Schaeffer raised the possibility of earthquake destruction, those supporting the seismic hypothesis have had a problem: The final Bronze Age destruction levels occur over a span of 50 years (c. 1225–1175 B.C.). This obstacle disappears, however, if one recognizes the possibility that sites could indeed have been destroyed over that 50-year period as a result, directly or indirectly, of an “earthquake storm” rather than as the result of a single seismic event.22

Of course, even if earthquakes did cause considerable damage, they did not by themselves destroy entire societies or lower the curtain on the Bronze Age—as shown by the rebuilding of Mycenae, Tiryns, Midea, the Menelaion and Kynos, among other sites, after earthquakes struck. Rebuilding efforts included construction of massive cyclopean walls and fortified gates (for example, Mycenae’s famous Lion Gate) immediately after the earthquakes at Mycenae and Tiryns, indicating a new concern about defense.

We believe that an earthquake storm triggered a “systems collapse,” in which complex, centralized societies broke down under the pressure of economic, physical or demographic catastrophes.23 An earthquake storm that severely damaged buildings and killed or wounded a great many people must have affected trade, inducing widespread economic hardship and rendering these sites vulnerable to invasion or civil strife. The destruction caused by sequences of earthquakes may have been the first link in a chain of events that led to the collapse of political, social and economic systems in the Aegean and the eastern Mediterranean, bringing the Bronze Age to a resounding close.

A longer version of this paper was published as “Poseidon’s Horses: Plate Tectonics and Earthquake Storms in the Late Bronze Age Aegean and Eastern Mediterranean,” Journal of Archaeological Science 27 (2000).